Designing a Nutrition Intervention to Impact Metabolic, Microbiome and Vascular

Health in Young Adults at Risk for Disease: FRUVEDomic Pilot Study

Oluremi Famodu MS RDN¹, Mark Olfert PhD², Pamela J Murray MD MHP³, Joseph McFadden PhD¹, Christopher Cuff PhD⁴, Paul Chantler PhD², Melissa Olfert DrPH RDN¹

West Virginia University: ¹Davis College of Agriculture, Natural Resources and Design – Animal and Nutritional Sciences; ²School of Medicine - Exercise Physiology; ³School of Medicine – Pediatrics; 4School of Medicine – Microbiology

Public Health Relevance

Obesity remains a worldwide problem due to the risk of exacerbating health conditions and the contributions to healthcare costs, further creating a need for interventions. Increasing trends of obesity are seen among college students, ages 18-25. In addition to obesity, the metabolic syndrome (metS) affects more than 20% of U.S. adults, where it has been reported that at least 27% of college students have one component of metS. However, links between certain biomarkers of poor metabolic health have not been strongly explored which presents an urgent need to better understand as individualized medical treatment is becoming highly popular.

Objective

To design a multi-disciplinary, free-living, nutrition intervention based on the 2010 Dietary Guidelines for Americans, using nutrition education, culinary toolkit distribution and one-on-one counseling, to impact metabolomics, cardiovascular, and microbiome health in "at risk" young adults (18-29 years) for metS. Post-study analysis will include amino acid, carbohydrate, fatty acid, and sphingolipid metabolism in our metabolism in our metabolism in our metabolism in our metabolism.

Project Description and Approach

Recruitment/Randomization

Due to the increased popularity and necessity of exploratory, translation work, scientists from various disciplines (nutrition, metabolomics, microbiome, cardiovascular, microcirculation and physiology) worked together to implement this pilot study. Recruited 37 young adults "at risk" for metS. All undergraduate and graduate students were invited to be screened and consented into this project via two MIX announcements. Over 200 interested individuals contacted the researchers to participate. Subjects were randomized into one of 3 groups (n=12/group; 9):

- 1. "Fruved" diet (50% Fruit and Vegetable)
- 2. "Fruved+LowCHO" diet (Low Refined Carbohydrate)
- "Fruved+LowFat" diet (Low Fat)

Education

Group nutrition education delivered before start of intervention included:

- Nutrition 101
- Budget/Grocery Shopping Tips
- Healthy Eating Out
- Food Label Reading
- Culinary Toolkit Distribution

Maasuramants

Anthropometrics, body composition, venous blood samples, stool samples, arterial stiffness and a ~300 question lifestyle behaviors survey were collected at baseline and again at post. Venous blood samples were collected additionally at weeks 2 and 5 of the intervention, resulting in a total 4 repeated blood samples for metabolomic assessment.

Intervention Aderhence

Participants underwent individual weekly consultations with the Registered Dietitian Nutritionist, using food logs, food pictures and receipt management to assess adherence and cost of the intercention.

Baseline Results

Table 1: Demographics				
Variable	Frequency (n=36)	Percent		
Race White African American Hispanic Asian Indian/Native American	23 4 4 4 1	63.9 11.1 11.1 11.1 2.8		
Appalachian Origin Appalachian Not Appalachian metS Risk Category	17 19	47.2 52.8		
High Medium/High Medium Low	13 13 8 2	36.1 36.1 22.2 5.6		
Actual metS Breakdown 3 criteria 2 criteria 1 criteria 0 criteria	1 3 11 21	2.8 8.3 30.6 58.3		
Sex Female Male	21 15	58.3 41.7		
BMI Category Underweight Healthy Overweight Obese Morbid Obese	0 16 14 5	0 44.4 38.9 13.9 2.8		

Table 2: Participant Blood Chemistry and Anthropometrics				
Variable	Baseline Mean (SD)	Post Mean (SD)		
BMI Males (n=15) Females (n=21)	27.4 (4.3) 26.7 (7.0)	27.2 (4.7) 26.5 (7.1)		
Waist (cm) Males Females	91.5 (10.7) 79.2 (12.6)	88.4 (10.4)* 77.2 (12.2)*		
Blood Pressure Males Females	124.1/60.1 (15.7/9.4) 113.3/64.1 (14.7/10.5)	115.1*/58.9 (8.9/7.2) 108.9/62.9 (9.4/7.5)		
Body Fat % Males Females	25.2 (17.2) 33.0 (10.1)	20.9 (8.9) 32.6 (10.1)		
Glucose (mg/dL) Males Females	89.6 (6.3) 85.4 (8.2)	90.3 (8.2) 85.2 (9.0)		
Triglycerides (mg/dL) Males Females	92.7 (34.8) 92.4 (32.1)	87.2 (47.9) 96.6 (34.8)		
Total Cholesterol (mg/dL) Males Females	185.1 (27.9) 173.0 (26.8)	169.7 (30.5)* 175.7 (25.3)		
LDL Cholesterol (mg/dL) Males Females	115.4 (19.6) 95.0 (19.5)	107.5 (23.2) 99.7 (22.0)		
HDL Cholesterol (mg/dL) Males Females	51.1 (12.7) 59.6 (13.0)	44.7 (8.8)* 56.5 (12.7)		
C Reactive Protein (mg/dL) Males Females	0.2 (0.1) 0.5 (0.6)	1.9 (3.1)* 1.7 (4.0)		
*p<0.05				

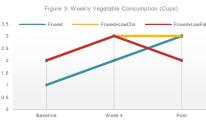
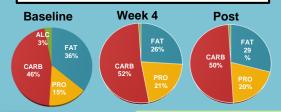
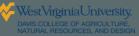



Figure 3: Macronutrient Distribution: Low-Fat Intervention


Table 3: Average Fiber, Sugar & Empty Calorie Consumption: Low-Refined CHO Intervention					
Variable	Baseline	Week 4	Post		
Empty Calories	1065	313	316		
Sugar (g)	70	84	76		
Fiber (g)	17	24	27		

Impact and Reach

The connection between nutrition and health has long been recognized, but precisely how nutrients interact with human physiology to elicit health or disease is in its infancy. With this new era of -omics (i.e genomics, metabolomics, and nutrigenomics), it allows us to measure thousands of biological events and pose questions on the relationship between diet and health at the fundamental level. As a result of this emerging science and inclusion of more multidisciplinary work, nutrition research has shifted from epidemiology and physiology with population-based recommendations, to a molecular and individual level of counseling.

More importantly, identifying markers among those "at risk" of metS and other co-morbidities will help quantify disease risk and generate "personalized nutrition" prescription. Additionally, targeting of college-aged students is an added benefit, as higher education is often the catalyst of where behavior is learned and lifestyle modification can be promoted for a sustainable future.

